The deal with division by zero

The first commandment of mathematics is: "Thy shall not divide by zero. Ever..."

The expressions $\frac{3}{0}$ and $\frac{0}{3}$ look very similar, and yet they are very different. How can we remember which is which?

<u>Method 1.</u> If you don't remember which is which, just ask your calculator. If we punch in $\frac{0}{3}$, the calculator gives us the answer 0. But if we type in $\frac{3}{0}$, we get some kind of an error message Some calculator will say "domain error", others will say "error: division by zero"; but no calculator will let you go on thinking that there is a meaningful result to the operation $\frac{3}{0}$.

<u>Method 2.</u> You should know this one too, in case you are not allowed to use a calculator on an exam. The trick is to know that division is defined in terms of multiplication. Consider the easy division $\frac{10}{2}$.

$$\frac{10}{2} = 5$$
 because the multiplication backwards works, i.e. $10 = 2 \cdot 5$

$$\frac{0}{3} = \square$$

What could we enter into the empty box so that the multiplication backwards will work? Clearly the answer is zero. Indeed,

$$\frac{0}{3} = 0 \quad \text{because} \quad 3 \cdot 0 = 0$$
$$\frac{3}{0} = \Box$$

Consider now

What could we enter into the empty box so that the multiplication backwards will work? No matter what number we would write, zero times it will be zero.

 $3 \neq 0$. \Box no matter what value we write in the box

because $0 \cdot \Box = 0$. Thus, it is impossible to enter a number into the box to make the multiplication backwards work.

Any time we are instructed to divide by zero, we need to write the final answer: undefined.

Example 1 $\frac{3-2(-2)}{3-2^2+1} = \frac{3-(-4)}{3-4+1} = \frac{7}{-1+1} = \frac{7}{0} =$ undefined