1. Simplify:
a) $\frac{x^{3}-9 x}{x^{2}-7 x+12}$
b) $\frac{x^{2}-2 x-8}{x^{3}+x^{2}-2 x} \quad$ c) $\frac{\frac{1}{x}-\frac{1}{5}}{\frac{1}{x^{2}}-\frac{1}{25}}$
d) $\frac{9-x^{-2}}{3+x^{-1}}$
2. Rationalize the denominator:
a) $\frac{2}{\sqrt{3}+\sqrt{2}}$
b) $\frac{4}{1-\sqrt{5}}$
3. Assume that all variables represent positive numbers. Write each of the following expressions in the form $c a^{p} b^{q}$ where c, p, q are numbers:
а) $\frac{\left(2 a^{2}\right)^{3}}{b}$
b) $\sqrt{9 a b^{3}}$
c) $\frac{a\left(\frac{2}{b}\right)}{\frac{3}{a}}$
d) $\frac{a b-a}{b^{2}-b}$
e) $\frac{a^{-1}}{\left(b^{-1}\right) \sqrt{a}}$
f) $\left(\frac{a^{2 / 3}}{b^{1 / 2}}\right)^{2}\left(\frac{b^{3 / 2}}{a^{1 / 2}}\right)$
4. Solve for x. Do not use a calculator.
a) $5^{x+1}=25$
b) $\frac{1}{3}=3^{2 x+2}$
c) $\log _{2} x=3$
d) $\log _{3} x^{2}=2 \log _{3} 4-4 \log _{3} 5$
5. Simplify
a) $\log _{2} 5+\log _{2}\left(x^{2}-1\right)-\log _{2}(x-1)$
b) $3^{2 \log _{3} 5}$
c) $2 \log _{4} 9-\log _{2} 3$
6. Simplify
a) $\log _{10}\left(10^{1 / 2}\right)$
b) $\log _{10}\left(\frac{1}{10^{x}}\right)$
c) $2 \log _{10} \sqrt{x}+3 \log _{10} x^{1 / 3}$
7. Solve the following equations for the indicated variables.
a) $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, for a
b) $S=2(a b+b c+a c)$, for a
c) $A=2 \pi r^{2}+2 \pi r h$, for positive r
d) $A=P+n P r$, for P
e) $2 x-2 y d=y+x d$, for d
f) $\frac{2 x}{4 \pi}+\frac{1-x}{2}=0$ for x
8. Find the vertex for each of the following parabolas.
a) $y=x^{2}+4 x+3$
b) $3 x^{2}+3 x+2 y=0$
c) $9 y^{2}-6 y-9-x=0$
9. Find all real solutions to each of the following equations.
a) $x^{6}-16 x^{4}=0$
b) $4 x^{3}-8 x^{2}-25 x+50=0$
c) $8 x^{3}+27=0$
d) $x^{4}=1$
10. Solve the equations:
a) $4 x^{2}+12 x+3=0$
b) $2 x+1=\frac{5}{x+2}$
c) $\frac{x+1}{x}-\frac{x}{x+1}=0$
11. Find the remainders on division of
a) $x^{5}-4 x^{4}+x^{3}-7 x+1$ by $x+2$
b) $x^{5}-x^{4}+x^{3}+2 x^{2}-x+4$ by $x^{3}+1$
12. The equation $12 x^{3}-23 x^{2}-3 x+2=0$ has a solution $x=2$. Find all other solutions.
13. Solve the inequalities a) $x^{2}+2 x-3 \leq 0 \quad$ b) $\frac{2 x-1}{3 x-2} \leq 1 \quad$ c) $x^{2}+x+1>0$
14. Solve for x : a) $|5 x-2|=8 \quad$ b) $|2 x+1|=|x+3|$
15. Determine the equations of the following lines:
a) the line through $(-1,3)$ and $(2,-4)$
b) the line through $(-1,2)$ and perpendicular to the line $2 x-3 y+5=0$
c) the line through $(2,3)$ and the midpoint of the line segment from $(-1,4)$ to $(3,2)$.
16. a) Find the point of intersection of the lines: $3 x-y-7=0$ and $x+5 y+3=0$
b) Shade the region in the $x y$-plane that is described by the inequalities $\left\{\begin{array}{l}3 x-y-7<0 \\ x+5 y+3 \geq 0\end{array}\right.$.
17. For the circle $x^{2}+y^{2}+6 x-4 y+3=0$, find
a) the center and radius
b) the equation of the tangent line at $(-2,5)$
18. Find the equations of the following circles:
a) the circle with center at $(1,2)$ that passes through the point $(-2,-1)$
b) the circle that passes through the origin and has intercepts equal to 1 and 2 on the x - and y-axes, respectively.
c) A circle is tangent to the y-axis at $y=3$ and has one x-intercept at $x=1$.
19. a) Find the domain and range of the functions: i) $f(x)=7$
ii) $g(x)=\frac{5 x-3}{2 x+1}$
b) Find the domain of the function $f(x)=\frac{3 x+1}{\sqrt{x^{2}+x-2}}$
20. Simplify $\frac{f(x+h)-f(x)}{h}$ where
a) $f(x)=2 x+3$
b) $f(x)=x^{2}$
c) $f(x)=\frac{1}{x+1}$
21. The graph of a function $y=f(x)$ is given as follows:

Plot the graph of each of the following functions: a) $f(x+1) \quad$ b) $f(-x) \quad$ c) $|f(x)| \quad$ d) $f(|x|)$
22. Sketch the graph of the functions: a) $g(x)=|3 x+2| \quad$ b) $h(x)=|x(x-1)|$
23. a) Sketch the graph of the quadratic function $y=2 x^{2}-4 x+3$
b) The graph of a quadratic function (a parabola) has x-intercepts -1 and 3 and a range consisting of all numbers less than or equal to 4 . Determine an expression for the function.
24. Find the inverse of the following functions.
a) $f(x)=2 x+3$
b) $f(x)=\frac{x+2}{5 x-1}$
c) $f(x)=x^{2}+2 x-1, \quad x>0$
25. A function $f(x)$ has the following graph. Sketch the graph of the inverse function $f^{-1}(x)$.

26. Express x in terms of the other variables in the picture.

a)

b)
27. A curve is traced by a point $P(x, y)$ which moves such that its distance fom the point $A(-1,2)$ is twice its distance from the point $B(2,-1)$. Determine the equation of the curve.
28. Let $f(x)=\frac{|x|}{x}$. Show that $f(x)=\left\{\begin{array}{cll}1 & \text { if } & x>0 \\ -1 & \text { if } & x<0\end{array}\right.$. Find the domain and range of $f(x)$.
29. a) Find the ratio of the area inside the square but outside the circle to the area of the square in picture (a) below.

b) Find a formula for the perimeter of a window of the shape on picture (b) above.
c) A water tank has the shape of a cone (like an ice cream cone without ice cream). The tank is 10 m high and has a radius of 3 m at the top. If the water is 5 m deep (in the middle) what is the surface area of the top of the water?
d) Two cars start moving from the same point. One travels south at $100 \frac{\mathrm{~km}}{\mathrm{~h}}$ (kilometer per hour), the other west at $50 \frac{\mathrm{~km}}{\mathrm{~h}}$. How far apart are they two hours later?
e) A kite is 100 m above the ground. If there is 200 m of string out, what is the angle between the string and the horizontal? (Assume that the string is perfectly straight.)
30. Without using a calculator, evaluate each of the following:
a) $\cos 210^{\circ}$
b) $\sin \frac{5 \pi}{3}$
c) $\tan ^{-1}(-1)$
d) $\sin ^{-1}(-1)$
e) $\cos \frac{9 \pi}{4}$
f) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
g) $\tan \left(\frac{7 \pi}{6}\right)$
h) $\cos ^{-1}(-1)$
31. Solve for x : a) $3 \sin ^{2} x=\cos ^{2} x ; \quad 0 \leq x \leq 2 \pi$
b) $\cos ^{2} x-\sin ^{2} x=\sin x ; \quad-\pi \leq x \leq \pi$
c) $\tan x+\sec x=2 \cos x ; \quad-\infty<x<\infty$
32. Assume the following. For all real numbers x and y,

$$
\begin{aligned}
\sin ^{2} x+\cos ^{2} x & =1 \\
\cos (x+y) & =\cos x \cos y-\sin x \sin y \text { and } \\
\sin (x+y) & =\sin x \cos y+\cos x \sin y
\end{aligned}
$$

Use the statements above to prove each of the following identities.
a) $\sin 2 x=2 \sin x \cos x$
b) $\cos 2 x=\cos ^{2} x-\sin ^{2} x$
c) $\cos 2 x=2 \cos ^{2} x-1$
d) $\cos 2 x=1-2 \sin ^{2} x$
e) $\left|\cos \frac{x}{2}\right|=\sqrt{\frac{1+\cos x}{2}}$
f) $\left|\sin \frac{x}{2}\right|=\sqrt{\frac{1-\cos x}{2}}$
33. Given the graph of $y=\sin x$, sketch the graphs of

a) $y=\sin \left(x-\frac{\pi}{4}\right)$
b) $y=\sin \left(\frac{x}{2}\right)$
c) $y=2 \sin x$
d) $y=\cos x$
e) $y=\frac{1}{\sin x}$

