
Lecture Notes Complex Numbers page 1

The set of all complex numbers, (denoted by C) is a set containing the set of all real numbers, denoted by R. It is
best to think of complex numbers as an extension or enlargement of the set of real numbers. The de�nitions that
established the set of all complex numbers can be explained by this fact. Let us recall the expansion principle.

De�nition: TheExpansion Principle is our desire to protect already true statements whenever
new concepts are de�ned.

If a new de�nition would result in an already true statement becoming false, mathematicians do not accept the
de�nition.

We will see that most de�nitions about complex numbers can be explained as our only choice for creating a structure
around the real numbers that still has most properties and theorems of the real numbers.

De�nition: A complex number is z = a+ bi where a and b are real numbers.

Complex numbers are often denoted by z so that we can use x and y to denote its real and imaginary components.
For example, we will often see z = x+ yi where x and y are real numbers. If y happens to be zero, then x+ yi is
a real number. Thus, every real number is also a complex number. The set of all real numbers (denoted by R) is
a subset of the set of all complex numbers (denoted by C). In short, R � C. As a matter of fact, stepping out to
the complex numbers is in various ways the last step in our story of expanding our number system. This story is

N � Z � Q � R � C

Real numbers are depicted as points on a line, also called the number line, complex numbers are often depicted as
points on a plane, also called the complex plane. For example, the complex number a+ bi can be depicted as the
point (a; b) on the complex plane. This means that the real number 5 can be depicted as (5; 0) on the complex
plane, and the number i can be depicted as (0; 1). Notice that this correspondence between numbers and points is
a one-to-one correspondence: to each complex number, there exists a unique point in the plane, and to each point
in the plane, there exists a unique complex number. The origin represents the real number 0.

Recall the de�nition of absolute value. The absolute value of a real number is its distance from zero on the number
line. As it turns out, the absolute value (or modulus) of a complex number can be de�ned very similarly.

De�nition: The absolute value (or modulus) of a complex number is its distance from zero on the
number plane.

For example, the absolute value of 3+ i, denoted by j3 + ij can is the distance between the points corresponding to
3 + i and 0. That is, the distance between (0; 0) and (3; 1). We can use the distance formula or the Pythagorean
Theorem.

j3 + ij =
p
32 + 12 =

p
10

Notice that the absolute value of a complex number is (just like that of a real number) a non-negative real number.
Also, this de�nition clearly does not violate the expansion principle. If we take a real number and compute its
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absolute value as before, as a real number, we get the same result as we get when computing the absolute value as
a complex number.

Theorem: The absolute value (or modulus) of a complex number z = x+ yi (where x and y are real
numbers) is jzj =

p
x2 + y2.

De�nition: Addition between complex numbers is de�ned as follows: if z1 = x1 + y1i and z2 =
x2 + y2i, then

z1 + z2 = x1 + x2 + (y1 + y2) i

This de�nition is not at all surprising: we would like to preserve the basic rules from real numbers that allow us to
drop parentheses and combine like terms. With that in mind, this de�nition was pretty much the only way to go.
Notice that this de�nition of addition guarantees that addition of complex numbers inherit the properties from real
numbers: addition is commutative, associative, there is an identity element, zero. Once we de�ne multiplication
between a real and a every complex number, we will also establish that every complex number has an opposite.

De�nition: Multiplication between a real and a complex number: if z = x+ yi is a complex number
and c is a real number, then

cz = c (x+ yi) = cx+ cyi

Now we can easily de�ne subtraction between complex numbers. �To subtract is to add the opposite�will stay true.
For example, let z1 = 3 + i and z2 = 2� 3i. Then

z1 + z2 = (3 + i) + (2� 3i) = 3 + i+ 2� 3i = (3 + 2) + (i� 3i) = 5� 2i and

z1 � z2 = (3 + i)� (2� 3i) = 3 + i+ (�1) (2� 3i) = 3 + i+ (�2) + 3i = (3� 2) + (i+ 3i) = 1 + 4i

Because of the de�nitions we just discussed, all of these properties have very nice geometric properties. If we depict
z1, and z2 in the same coordinate system, and connect them to the origin, we obtain a triangle. If we now draw a
line through z1 that is parallel to z2 and another line through z2 that is parallel to z1, we obtain a parallelogram.
The fourth vertex of the parallelogram is z1 + z2. (Later we will see that this behavior is identical to addition of
vectors. This is because addition and subtraction of vectors are de�ned very similarly.)

The next logical step is to de�ne multiplication on complex numbers. It is clear that we would like to preserve
properties of multiplication from the real number system: we�d like multiplication to be commutative, associative,
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we would like to preserve the identity element being 1: And also, we would like to preserve the distributive law.
So, using our previous example of z1 and z2, we already have an idea about their product.

z1z2 = (3 + i) (2� 3i) = 3 � 2� 3 � 3i+ i � 2 + i (�3i) = 6� 9i+ 2i� 3i2 = 6� 7i� 3i2

We will know the product z1z2 if we could just �gure out what is i2. At this point of the construction of the
complex numbers, we had the freedom to de�ne i2 any way we liked. Of course, di¤erent choices would result in
di¤erent kind of rules we would observe. How i2 was de�ned has a lot to do with the expansion theorem. We will
see that if we want a simple rule from the real numbers, jxj jyj = jxyj to be true on the complex numbers, then i2
can only have the value �1.

Theorem: If for all complex numbers z1 and z2; the statement jz1j jz2j = jz1z2j is true, then i2 can
only be de�ned as �1.

Proof: Assume that the complex number i2 = a+ bi. So, we will know the complex number i2 if we know the real
numbers a and b. In what follows, we will obtain two equations in a and b. First, let us look at the statement

jij � jij =
��i2��

Since jij = 1 and
��i2�� = ja+ bij = pa2 + b2, this equation becomes

1 � 1 =
p
a2 + b2 squaring both sides gives us

1 = a2 + b2

Next, let us look at the statement
j1 + ij � j1� ij = j(1 + i) (1� i)j

On the left-hand side, we can determine the absolute value of each numbers:

j1 + ij =
p
12 + 12 =

p
2 and j1� ij =

q
12 + (�1)2 =

p
2

On the right-hand side, we simplify (1 + i) (1� i) as much as we can: (1 + i) (1� i) = 1� i2. So, our equation

j1 + ij � j1� ij = j(1 + i) (1� i)j becomesp
2 �
p
2 =

��1� i2��
2 =

��1� i2��
Recall that i2 = a+ bi, where a and b are real numbers.

2 = j1� (a+ bi)j
2 = j1� a� bij
2 = j(1� a)� bij

2 =

q
(1� a)2 + b2 square both sides

4 = (1� a)2 + b2

So, we have two equations:

a2 + b2 = 1

(1� a)2 + b2 = 4
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This should be enough for us to �nd a and b. Let us work on the second equation:

(1� a)2 + b2 = 4

1� 2a+ a2 + b2| {z } = 4 according to the other equation, a2 + b2 = 1

1� 2a+ 1 = 4

2� 2a = 4

2 = 4 + 2a

�2 = 2a

�1 = a

Now let us go back to the �rst equation:

a2 + b2 = 1 and now we know that a = �1
(�1)2 + b2 = 1

b2 = 0

b = 0

Thus i2 = a+ bi = �1 + 0i = �1. This concludes our proof. �
What did we prove here? Did we prove that i2 is �1? No, we have only proved that if we wanted to preserve the
rule jxj jyj = jxyj from the real numbers, our only option for the value of i2 is �1. We didn�t even prove that if we
de�ne i2 to be �1, some other things wouldn�t go wrong. Or even that the rule jxj jyj = jxyj would always work.
We just used this rule in two cases: jij jij =

��i2�� and j1 + ij j1� ij = j(1 + i) (1� i)j. Mathematicians still needed
to verify that all the rules we desire to preserve are safe under the de�nition i2 = �1. And, as it turned out, they
all (or at least most) are safe.

De�nition: i2 = �1

Now we can easily de�ne multiplication on complex numbers. Our un�nished example,

z1z2 = (3 + i) (2� 3i) = 6� 9i+ 2i� 3i2 = 6� 7i� 3 (�1) = 6� 7i+ 3 = 9� 7i

In general, if z1 = x1 + y1i and z2 = x2 + y2i, then

z1z2 = (x1 + y1i) (x2 + y2i) = x1x2 + x1y2i+ x2y1i+ y1y2
�
i2
�
= x1x2 + (x1y2 + x2y1) i+ y1y2 (�1)

= x1x2 � y1y2 + (x1y2 + x2y1) i

Theorem: If z1 = x1 + y1i and z2 = x2 + y2i, then z1z2 = x1x2 � y1y2 + (x1y2 + x2y1) i

The last operation that is left unde�ned is division. But before we do that, we will de�ne the complex conjugate
of a number. As we will see later, complex conjugates are exremely useful.

De�nition: The complex conjugate of a number z, denoted by z is de�ned as follows. If z = x+ yi,
then z = x� yi.
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A complex number and its complex conjugate are
symmetrical to the x�axis.

An interesting and important fact: if add or multiply a complex number and its conjugate, the result in both cases
is a real number. Consider for example z = 1 + 7i. Then

z + z = (1 + 7i) + (1� 7i) = 2 and zz = (1 + 7i) (1� 7i) = 1� 49i2 = 1 + 49 = 50

Actually, more is true: if we multiply a complex number z and its conjugate z, the result is the square of the
absolute value of z.

Theorem: zz = jzj2.

Proof: Supose that z = x+ yi. Then z = x� yi and recall that jx+ yij =
p
x2 + y2

zz = (x+ yi) (x� yi) = x2 � y2
�
i2
�
= x2 + y2 = jzj2

We are now ready to de�ne division on complex numbers. First, we de�ne division of a complex number by a real
number. We actually already have this de�nition, remember, to divide is to multiply by the reciprocal. So, if c is
a real number, not zero, and z = x+ yi is any complex number, then

z

c
=
x+ yi

c
=
1

c
(x+ yi) =

x

c
+
y

c
i

When we are dividing by a complex number z, we will use the conjugate z to transform the division into another

one where the denominator is real. Let us look at, for example, the division
3� 4i
2 + i

. To make the denominator

real, we multiply both numerator and denominator by the conjugate of 2 + i. 1 is still the multiplicative identity
so multiplication by 1 still does not change the value of any complex number.

3� 4i
2 + i

=
3� 4i
2 + i

� 1 = 3� 4i
2 + i

� 2� i
2� i =

(3� 4i) (2� i)
(2 + i) (2� i) =

6� 3i� 8i+ 4i2
4� 2i+ 2i� i2 =

6� 11i+ 4 (�1)
4� (�1) =

2� 11i
5

and now this is just a division by a real number:

2� 11i
5

=
1

5
(2� 11i) = 2

5
� 11
5
i

Some questions are now di¤erent depending on whether we are working within R or C. For example,
p
�9 is

unde�ned over the real numbers but it is 3i over the complex numbers.
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Another very important property of complex numbers is that over C; every polynomial can be factored into a
product of linear factors. Consider for example the polynomial x2+1. While it is irreducible over R, it is not over
C. We apply the di¤erence of squares theorem:

x2 + 1 = x2 � (�1) = x2 � i2 = (x+ i) (x� i)

We can factor more complicated quadratic expressions by completing the square.

x2 � 6x+ 13 = x2 � 6x+ 9| {z }�9 + 13 = (x� 3)2 + 4 = (x� 3)2 � (�4)
= (x� 3)2 � (2i)2 = (x� 3 + 2i) (x� 3� 2i)

So, every quadratic equation has solution(s) over the complex numbers.

While we preserved most of the mathematics we had over the real numbers, we did lose some parts. For example,
we cannot order complex numbers. In other words, < and � are meaningless over the complax numbers, unless
they happen to be real.

Another rule we have lost is that
p
ab =

p
a
p
b. While this was true among real numbers, it is no longer ture over

the complex numbers. Here is an easy example to consider:
p
�4
p
�4 = (2i) (2i) = 4i2 = �4 but

p
�4 (�4) =

p
16 = 4

So we need to be careful not to use this rule over C.

Sample Problems

Perform the indicated operations and simplify.

1. j3� 5ij

2. (2� 5i) + (1� i)

3. 3 + 5i� (2 + 3i)

4. 3 (2� i)� 2 (3 + i)

5. �i (3 + i)

6. 3 (2� i)� 2i (3 + i)

7. (2� 3i) (5 + 2i)

8. (3� 2i)2

9. (3� 2i) (3 + 2i)

10. (7� 3i) (i+ 1)

11. (3 + 5i) (�3 + 5i)

12. (1� 3i)2 (1 + 3i)2

13. (1� i)4

14.
2i

1� i

15.
1 + 7i

3i+ 1

16.
10 + 5i

3 + 4i

17.
5

2� i

18.
8i� 1
2i+ 3

19.
5

1 + 2i
� 10i

1� 2i

20.
(3 + 2i) (5� 3i)� (7� 2i) (3� i)

3� 4i 21.
(3� i)2 � (1 + 3i)2

2i+ 2

Completely factor each of the following over the complex numbers.

22. x2 + 9 23. x2 � 10x+ 29 24. x4 � 1

Solve each of the following equations over the complex numbers.

25. x2 = 4x� 29 26. x2 + 3 = 2x

27*. Find z such that z2 = �21 + 20i.
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Sample Problems - Answers

1.
p
34 2. 3� 6i 3. 1 + 2i 4. �5i 5. 1� 3i 6. 8� 9i 7. 16� 11i 8. 5� 12i 9. 13

10. 10+ 4i 11. �34 12. 100 13. �4 14. �1+ i 15.
11

5
+
2

5
i 16. 2� i 17. 2+ i

18. 1 + 2i 19. 5� 4i 20. �2 + 2i 21. 1� 7i 22. (x+ 3i) (x� 3i) 23. (x� 5 + 2i) (x� 5� 2i)

24. (x+ 1) (x� 1) (x+ i) (x� i) 25. 2 + 5i and �2� 5i 26. 1 +
p
2i and 1�

p
2i 27. 2 + 5i and

�2� 5i

Sample Problems - Solutions

Perform the indicated operations and simplify.

1. j3� 5ij
Solution: The absolute value of complex number is its distance from zero on the number plane. In the case
of 3� 5i this means the distance between the points (3;�5) and (0; 0)

We state the Pythagorean theorem on the right triangle and obtain the equation

32 + 52 = x2

34 = x2

�
p
34 = x

Since distances can never be negative, we rule out the negative solution and so the answer is
p
34:

2. (2� 5i) + (1� i)
Solution: We simply drop the parentheses and combine like terms.

(2� 5i) + (1� i) = 2� 5i+ 1� i = 2 + 1 + (�5i� i) = 3� 6i

3. 3 + 5i� (2 + 3i)
Solution: To subtract is to add the opposite. Then we drop the parentheses and combine like terms.

3 + 5i� (2 + 3i) = 3 + 5i+ (�1) (2 + 3i) = 3 + 5i+ (�2� 3i) = 3� 2 + 5i� 3i = 1 + 2i
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4. 3 (2� i)� 2 (3 + i)
Solution: We apply the distributive law and combine like terms.

3 (2� i)� 2 (3 + i) = 6� 3i� 6� 2i = �5i

5. �i (3 + i)
Solution: We apply the distributive law and combine like terms.

�i (3 + i) = �3i� i2 = �3i� (�1) = 1� 3i

6. 3 (2� i)� 2i (3 + i)
Solution: We apply the distributive law and combine like terms.

3 (2� i)� 2i (3 + i) = 6� 3i� 6i� 2i2 = 6� 9i� 2 (�1) = 6� 9i+ 2 = 8� 9i

7. (2� 3i) (5 + 2i)
Solution: We apply the distributive law (in this case, FOIL) and combine like terms.

(2� 3i) (5 + 2i) = 10 + 4i� 15i� 6i2 = 10 + 4i� 15i� 6 (�1) = 16� 11i

8. (3� 2i)2
Solution: We apply the distributive law (in this case, FOIL) and combine like terms.

(3� 2i)2 = (3� 2i) (3� 2i) = 9� 6i� 6i+ 4i2 = 9� 6i� 6i+ 4 (�1) = 5� 12i

9. (3� 2i) (3 + 2i)
Solution: We apply the distributive law (in this case, FOIL) and combine like terms.

(3� 2i) (3 + 2i) = (3� 2i) (3 + 2i) = 9� 6i+ 6i� 4i2 = 9� 4 (�1) = 13

Since we multiplied conjugates, we have the di¤erence of squares theorem.

10. (7� 3i) (i+ 1)
Solution: We apply the distributive law (in this case, FOIL) and combine like terms.

(7� 3i) (i+ 1) = 7i+ 7� 3i2 � 3i = 7i+ 7� 3 (�1)� 3i = 10 + 4i

11. (3 + 5i) (�3 + 5i)
Solution: We apply the distributive law (in this case, FOIL) and combine like terms. After FOIL, there will
be cancellations because we are multiplying a number and its conjugate, so the product is the di¤erence of
the two squares.

(3 + 5i) (�3 + 5i) = �9 + 15i� 15i+ 25i2 = �9 + 25 (�1) = �9� 25 = �34

12. (1� 3i)2 (1 + 3i)2
Solution 1: We apply the distributive law for each square and multiply the two numbers we obtained.

(1� 3i)2 (1 + 3i)2 =
�
1� 3i� 3i+ 9i2

� �
1 + 3i+ 3i+ 9i2

�
= (1� 6i+ 9 (�1)) (1 + 6i+ 9 (�1))
= (�8� 6i) (�8 + 6i) = �2 (4 + 3i) 2 (�4 + 3i)
= �4 (4 + 3i) (�4 + 3i) = �4

�
�16 + 12i� 12i+ 9i2

�
= �4 (�16 + 9 (�1)) = �4 (�25) = 100
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Solution 2: We "outsmart" the problem by computing the product in a di¤erent order. We use the exponent
rule a2b2 = (ab)2.

(1� 3i)2 (1 + 3i)2 = ((1� 3i) (1 + 3i))2

=
�
1 + 3i� 3i� 9i2

�2
= (1� 9 (�1))2 = 102 = 100

13. (1� i)4

Solution: We will compute
�
(1� i)2

�2
.

(1� i)4 =
�
(1� i)2

�2
= ((1� i) (1� i))2 =

�
1� i� i+ i2

�2
= (1� 2i+ (�1))2 = (�2i)2 = 4i2 = 4 (�1) = �4

14.
2i

1� i
Solution: We will use the same technique as with rationalizing quotients with irrational denominator: we
multiply the fraction by 1, where both numerator and denominator are the conjugate of the denominator.

2i

1� i =
2i

1� i � 1 =
2i

1� i �
1 + i

1 + i
=
2i (1 + i)

12 � i2 =
2i+ 2i2

1� (�1) =
2i+ 2 (�1)

2
=
�2 + 2i
2

=
2 (�1 + i)

2
= �1 + i

15.
1 + 7i

3i+ 1
Solution: We �rst multiply the fraction by 1, where both numerator and denominator are the conjugate of
the denominator.

1 + 7i

3i+ 1
=

1 + 7i

1 + 3i
� 1 = 1 + 7i

1 + 3i
� 1� 3i
1� 3i =

(1 + 7i) (1� 3i)
12 � (3i)2

=
1� 3i+ 7i� 21i2

1� 9i2 =
1 + 4i� 21 (�1)
1� 9 (�1)

=
1 + 4i+ 21

10
=
22 + 4i

10
=
22

10
+
4

10
i =

11

5
+
2

5
i

16.
10 + 5i

3 + 4i
Solution: We �rst multiply the fraction by 1, where both numerator and denominator are the conjugate of
the denominator.

10 + 5i

3 + 4i
=

10 + 5i

3 + 4i
� 1 = 10 + 5i

3 + 4i
� 3� 4i
3� 4i =

(10 + 5i) (3� 4i)
(3 + 4i) (3� 4i) =

30� 40i+ 15i� 20i2
9� 12i+ 12i� 16i2

=
30� 25i� 20 (�1)

9� 16 (�1) =
30� 25i+ 20

9 + 16
=
50� 25i
25

=
25 (2� i)

25
= 2� i

17.
5

2� i
Solution: We �rst multiply the fraction by 1, where both numerator and denominator are the conjugate of
the denominator.

5

2� i =
5

2� i � 1 =
5

2� i �
2 + i

2 + i
=

5 (2 + i)

(2 + i) (2� i) =
10 + 5i

22 � i2 =
10 + 5i

4� (�1) =
10 + 5i

4 + 1
=
10 + 5i

5

=
5 (2 + i)

5
= 2 + i
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18.
8i� 1
2i+ 3
Solution: We will use the same technique as with rationalizing quotients with irrational denominator: we
multiply the fraction by 1, where both numerator and denominator are the conjugate of the denominator.

8i� 1
2i+ 3

=
�1 + 8i
3 + 2i

� 1 = �1 + 8i
3 + 2i

� 3� 2i
3� 2i =

(�1 + 8i) (3� 2i)
32 � (2i)2

=
�3 + 2i+ 24i� 16i2

9� 4i2

=
�3 + 26i� 16 (�1)

9� 4 (�1) =
13 + 26i

13
=
13 (1 + 2i)

13
= 1 + 2i

19.
5

1 + 2i
� 10i

1� 2i
Solution: We perform each division and then subtract. As you see, it is sometimes wise to wait with the
distribution on the top because we save work as terms might cancel out before the multiplication.

5

1 + 2i
=

5

1 + 2i
� 1 = 5

1 + 2i
� 1� 2i
1� 2i =

5 (1� 2i)
12 � (2i)2

=
5 (1� 2i)
1� 4i2 =

5 (1� 2i)
1� 4 (�1) =

5 (1� 2i)
5

= 1� 2i

10i

1� 2i =
10i

1� 2i � 1 =
10i

1� 2i �
1 + 2i

1 + 2i
=
10i (1 + 2i)

12 � (2i)2
=
10i (1 + 2i)

1� 4i2 =
10i (1 + 2i)

1� 4 (�1)

=
10i (1 + 2i)

5
= 2i (1 + 2i) = 2i+ 4i2 = �4 + 2i

We are ready to subtract:

5

1 + 2i
� 10i

1� 2i = 1� 2i� (�4 + 2i) = 1� 2i+ 4� 2i = 5� 4i

20.
(3 + 2i) (5� 3i)� (7� 2i) (3� i)

3� 4i
Solution: We apply the order of operations agreement and perform the multiplications �rst, then the subtrac-
tion, and �nally the division.

(3 + 2i) (5� 3i) = 15� 9i+ 10i� 6i2 = 15 + i� 6 (�1) = 21 + i

(7� 2i) (3� i) = 21� 7i� 6i+ 2i2 = 21� 13i+ 2 (�1) = 19� 13i
(3 + 2i) (5� 3i)� (7� 2i) (3� i) = (21 + i)� (19� 13i) = 21 + i� 19 + 13i = 2 + 14i

2 + 14i

3� 4i =
2 + 14i

3� 4i � 1 =
2 + 14i

3� 4i �
3 + 4i

3 + 4i
=
6 + 8i+ 42i+ 56i2

32 � (4i)2
=
6 + 50i+ 56 (�1)

9� (�16)

=
�50 + 50i

25
=
25 (�2 + 2i)

25
= �2 + 2i

21.
(3� i)2 � (1 + 3i)2

2i+ 2
Solution:

(3� i)2 � (1 + 3i)2

2i+ 2
=

9� 6i+ i2 �
�
1 + 6i+ 9i2

�
2i+ 2

=
9� 6i+ (�1)� (1 + 6i� 9)

2i+ 2

=
8� 6i� (�8 + 6i)

2i+ 2
=
8� 6i+ 8� 6i

2i+ 2
=
16� 12i
2i+ 2

=
2 (8� 6i)
2 (1 + i)

=
8� 6i
1 + i

� 1 = 8� 6i
1 + i

� 1� i
1� i =

8� 8i� 6i+ 6i2
12 � i2 =

2� 14i
2

=
2 (1� 7i)

2
= 1� 7i
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Completely factor each of the following over the complex numbers.

22. x2 + 9

Solution: x2 + 9 = x2 � (�9) = x2 � (3i)2 = (x+ 3i) (x� 3i)
We can check via multiplication: (x+ 3i) (x� 3i) = x2 � 3ix+ 3ix� 9i2 = x2 � (�9) = x2 + 9.
So our solution is correct.

23. x2 � 10x+ 29
Solution:

x2 � 10x+ 29 = x2 � 10x+ 25| {z }�25 + 29 = (x� 5)2 + 4 = (x� 5)2 � (�4) = (x� 5)2 � (2i)2
= (x� 5 + 2i) (x� 5� 2i)

We can check via multiplication, but �rst we will make a slight modi�cation that will make the computation
easier. We will re-write x� 5 + 2i as x� (5� 2i) and x� 5� 2i as x� (5 + 2i) :

(x� 5 + 2i) (x� 5� 2i) = (x� (5� 2i)) (x� (5 + 2i))
= x2 � (5� 2i)x� (5 + 2i)x+ (5� 2i) (5 + 2i)
= x2 � x (5� 2i+ 5 + 2i) + 25� (2i)2 = x2 � 10x+ 29

and so our solution is correct.

24. x4 � 1
Solution:

x4 � 1 =
�
x2
�2 � 12 = �x2 + 1� �x2 � 1� = �x2 � (�1)� �x2 � 1� = (x+ i) (x� i) (x+ 1) (x� 1)

Solve each of the following equations over the complex numbers.

25. x2 = 4x� 29
Solution 1 (Completing the square).

x2 = 4x� 29
x2 � 4x+ 29 = 0 complete the square

x2 � 4x+ 4| {z }�4 + 29 = 0

(x� 2)2 + 25 = 0

(x� 2)2 � (�25) = 0

(x� 2)2 � (5i)2 = 0 factor via the di¤erence of squares theorem

(x� 2 + 5i) (x� 2� 5i) = 0

x� 2 + 5i = 0 or x� 2� 5i = 0
x = 2� 5i or x = 2 + 5i

Solution 2 (The quadratic formula)

x2 = 4x� 29
x2 � 4x+ 29 = 0 a = 1, b = �4, and c = 29
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x1;2 =
4�

q
(�4)2 � 4 � 1 � 29
2 � 1 =

4�
p
16� 116
2

=
4�

p
�100
2

=
4� 10i
2

= 2� 5i

We check x = 2� 5i.

LHS = x2 = (2� 5i)2 = 4� 20i+ 25i2 = 4� 20i� 25 = �21� 20i
RHS = 4x� 29 = 4 (2� 5i)� 29 = 8� 20i� 29 = �21� 20i

So x = 2� 5i is a solution. We also check x = 2 + 5i.

LHS = x2 = (2 + 5i)2 = 4 + 20i+ 25i2 = 4 + 20i� 25 = �21 + 20i
RHS = 4x� 29 = 4 (2 + 5i)� 29 = 8 + 20i� 29 = �21 + 20i

So x = 2 + 5i is also a solution.

26. x2 + 3 = 2x

Solution 1 (Completing the square).

x2 + 3 = 2x

x2 � 2x+ 3 = 0 complete the square

x2 � 2x+ 1| {z }�1 + 3 = 0

(x� 1)2 + 2 = 0

(x� 1)2 � (�2) = 0

(x� 1)2 �
�p
2i
�2

= 0 factor via the di¤erence of squares theorem�
x� 1 +

p
2i
��
x� 1�

p
2i
�

= 0

x� 1 +
p
2i = 0 or x� 1�

p
2i = 0

x = 1�
p
2i or x = 1 +

p
2i

Solution 2 (The quadratic formula)

x2 + 3 = 2x

x2 � 2x+ 3 = 0 a = 1, b = �2, and c = 3

x1;2 =
2�

q
(�2)2 � 4 � 1 � 3
2 � 1 =

2�
p
4� 12
2

=
2�

p
�8

2
=
2�

p
8i

2
=
2� 2

p
2i

2
= 1�

p
2i

We check x = 1 +
p
2i.

LHS = x2 + 3 =
�
1 +

p
2i
�2
+ 3 = 1 + 2i2 + 2

p
2i+ 3 = 2 + 2

p
2i

RHS = 2x = 2
�
1 +

p
2i
�
= 2 + 2

p
2i

So x = 1 +
p
2i is a solution. We also check x = 1�

p
2i.

LHS = x2 + 3 =
�
1�

p
2i
�2
+ 3 = 1 + 2i2 � 2

p
2i+ 3 = 2� 2

p
2i

RHS = 2x = 2
�
1�

p
2i
�
= 2� 2

p
2i

So x = 1�
p
2i is also a solution.
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27. Find z such that z2 = �21 + 20i.
Solution: Let z = x+ yi. (Remember, x and y are real numbers.) Then

z2 = (x+ yi)2 = x2 + 2x (yi) + (yi)2 = x2 + 2xyi+ y2i2 = x2 � y2| {z }
real part

+ 2xyi|{z}
imaginary part

z2 = �21 + 10i�
x2 � y2

�
+ (2xy) i = �21 + 20i

The equation of complex numbers gives us a system of equations on real numbers.

x2 � y2 = �21
2xy = 20 =) xy = 10

We square the second equation

x2 + 21 = y2

x2y2 = 100

We solve the system by substitution:

x2
�
x2 + 21

�
= 100

x4 + 21x2 � 100 = 0�
x2 + 25

� �
x2 � 4

�
= 0

x21 = �25 x22 = 4

Since the square of real numbers can not be negative, only x2 = 4 can apply to this problem. If x = 2; we
get y = 5 and so z = 2 + 5i. If x = �2; then y = �5 and so z = �2� 5i. This does make sense: a number
and its opposite will square to the same thing even among complex numbers: (�z)2 = (�z) (�z) = z2.

For more documents like this, visit our page at https://teaching.martahidegkuti.com and click on Lecture Notes.
E-mail questions or comments to mhidegkuti@ccc.edu.
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