Sample Problems

We define the hyperbolic cosine and hyperbolic sine functions as

$$\cosh x = \frac{e^x + e^{-x}}{2} \quad \text{and} \quad \sinh x = \frac{e^x - e^{-x}}{2}$$

These functions have interesting properties, very similar to those of the trigonometric functions $\sin x$ and $\cos x$.

- 1. Prove that $\sinh x$ is an odd function, and $\cosh x$ is an even function.
- 2. Find the exact values of $\sinh 0$ and $\cosh 0$.
- 3. Prove that for all x, $\cosh^2 x \sinh^2 x = 1$
- 4. Can the expression $\cosh^2 x + \sinh^2 x$ be simplified?
- 5. Prove that $(\sinh x)' = \cosh x$ and $(\cosh x)' = \sinh x$
- 6. We define $\tanh x = \frac{\sinh x}{\cosh x}$.
 - (a) Prove that $\tanh x$ is an odd function.
 - (b) Prove that $(\tanh x)' = \frac{1}{\cosh^2 x}$
- 7. In trigonometry, we have the formulas $\sin 2x = 2 \sin x \cos x$ and $\cos 2x = \cos^2 x \sin^2 x$. Are there similar true statements about $\sinh 2x$ and $\cosh 2x$?
- 8. The Saint-Louis arch can be approximated as $y = 715 100 \cosh\left(\frac{x}{100}\right)$. (Units are measured in feet). How tall and how wide is this arch?

Sample Problems - Solutions

We define the **hyperbolic cosine** and **hyperbolic sine** functions as

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
 and $\sinh x = \frac{e^x - e^{-x}}{2}$

These functions have interesting properties, very similar to those of the trigonometric functions $\sin x$ and $\cos x$.

1. Prove that $\sinh x$ is an odd function, and $\cosh x$ is an even function. Solution:

$$\cosh(-x) = \frac{e^{-x} + e^{-(-x)}}{2} = \frac{e^{-x} + e^{x}}{2} = \cosh x$$

$$\sinh(-x) = \frac{e^{-x} - e^{-(-x)}}{2} = \frac{e^{-x} - e^{x}}{2} = -\frac{e^{x} - e^{-x}}{2} = -\sinh x$$

2. Find the exact values of $\sinh 0$ and $\cosh 0$.

Solution:

$$\sinh 0 = \frac{e^0 - e^{-0}}{2} = \frac{1 - 1}{2} = 0$$
 and $\cosh 0 = \frac{e^0 + e^{-0}}{2} = \frac{1 + 1}{2} = 1$

3. Prove that for all x, $\cosh^2 x - \sinh^2 x = 1$ Solution:

$$\cosh^{2} x - \sinh^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} = \frac{(e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2}}{4}$$
$$= \frac{e^{2x} + e^{-2x} + 2 - (e^{2x} + e^{-2x} - 2)}{4} = \frac{4}{4} = 1$$

- 4. Can the expression $\cosh^2 x + \sinh^2 x$ be simplified? Solution, yes, it is $\cosh 2x$. See problem 7.
- 5. Prove that $(\sinh x)' = \cosh x$ and $(\cosh x)' = \sinh x$ Solution: The derivative of e^{-x} is $-e^{-x}$ by the chain rule.

$$(\sinh x)' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{(e^x - e^{-x})'}{2} = \frac{(e^x - (-e^{-x}))}{2} = \frac{e^x + e^{-x}}{2} = \cosh x$$
$$(\cosh x)' = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{(e^x + e^{-x})'}{2} = \frac{(e^x + (-e^{-x}))}{2} = \frac{e^x - e^{-x}}{2} = \sinh x$$

- 6. We define $\tanh x = \frac{\sinh x}{\cosh x}$
 - (a) Prove that $\tanh x$ is an odd function. Solution: since $\sinh x$ is odd and $\cosh x$ is even, we easily have

$$\tanh(-x) = \frac{\sinh(-x)}{\cosh(-x)} = \frac{-\sinh x}{\cosh x} = -\tanh x$$

(b) Prove that $(\tanh x)' = \frac{1}{\cosh^2 x}$ Solution: We will use the quotient rule.

$$(\tanh x)' = \left(\frac{\sinh x}{\cosh x}\right)' = \frac{(\sinh x)'\cosh x - \sinh x \left(\cosh x\right)'}{\cos^2 x} = \frac{\cosh x \cosh x - \sinh x \sinh x}{\cos^2 x}$$
$$= \frac{\cosh^2 x - \sinh^2 x}{\cos^2 x} = \frac{1}{\cosh^2 x}$$

7. In trigonometry, we have the formulas $\sin 2x = 2 \sin x \cos x$ and $\cos 2x = \cos^2 x - \sin^2 x$. Are there similar true statements about $\sinh 2x$ and $\cosh 2x$? Solution:

$$\sinh 2x = \frac{e^{2x} - e^{-2x}}{2} = \frac{(e^x)^2 - (e^{-x})^2}{2}$$

$$= \frac{(e^x + e^{-x})(e^x - e^{-x})}{2} = 2 \cdot \frac{(e^x + e^{-x})(e^x - e^{-x})}{4}$$

$$= 2 \cdot \frac{(e^x + e^{-x})}{2} \cdot \frac{(e^x - e^{-x})}{2} = 2 \sinh x \cosh x$$

For a similar statement for $\cosh x$, notice that

$$(e^x + e^{-x})^2 = e^{2x} + e^{-2x} + 2$$
 and $(e^x - e^{-x})^2 = e^{2x} + e^{-2x} - 2$

and so

$$\cosh 2x = \frac{e^{2x} + e^{-2x}}{2} = \frac{2e^{2x} + 2e^{-2x}}{4} = \frac{(e^x + e^{-x})^2 + (e^x - e^{-x})^2}{4} \\
= \left(\frac{(e^x + e^{-x})}{2}\right)^2 + \left(\frac{(e^x - e^{-x})}{2}\right)^2 = \cosh^2 x + \sinh^2 x$$

8. The Saint-Louis arch can be approximated as $y = 715 - 100 \cosh\left(\frac{x}{100}\right)$. (Units are measured in feet). How tall and how wide is this arch? Answer: 530 ft wide, 615 ft tall.

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or comments to mhidegkuti@ccc.edu.