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The real numbers has the completeness property: If a non-empty set of real numbers is bounded above, then
there exists a least upper bound; if a non-empty set of real numbers is bounded below, then there exists a greatest
lower bound.
.
De�nition: The sequence fang converges to the number L if for every positive number " there exists

an integer N such that for all n,
if n > N then jan � Lj < ".

If no such number L exists, we say fang diverges.
If fang converges to L; we write lim

n!1
an = L or an ! L and call L the limit of the sequence.

Notice that jan � Lj < " and L� " < an < L+ " are equivalent statements.
.
Theorem 1. Convergent sequences have unique limits: if fang is a sequence with lim

n!1
an = A and lim

n!1
an = B,

then A = B.

Proof: Suppose for a contradiction that a sequence an converges to two di¤erent numbers A and B. The basic idea
here is that if " is selected to be small enough, then the " neighborhood of A will be disjoint of the " neighborhood
of B and so an can not be in both intervals.

Suppose that A 6= B. We may assume that A < B. (Otherwise just re-label them so that the larger number is

denoted by B.) De�ne " =
B �A
2

. Since fang converges to A, there exists NA so that for all n > NA,

A� " < an < A+ "

Similarly, since fang converges to B, there exists NB so that for all n > NB,

B � " < an < B + "

Now let n > max (NA; NB), so both conditions hold. Then

A� " < an < A+ " and B � " < an < B + "

We will only need the right-hand side of the �rst inequality and the left-hand side of the other:

an < A+ " and B � " < an recall that " =
B �A
2

an < A+
B �A
2

and B � B �A
2

< an

an <
2A

2
+
B �A
2

and
2B

2
� B �A

2
< an

an <
2A+B �A

2
and

2B �B +A
2

< an

an <
A+B

2
and

A+B

2
< an

These two can not be true at the same time. This is a contradiction, so A 6= B is impossible. This completes
our proof.
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In the following, we will prove properties of limits that enable us to compute limits based on other limits.
.
Theorem 2. (Sum Rule) Let fang and fbng be sequences of real numbers. Suppose that A and B are

real numbers such that lim
n!1

an = A and lim
n!1

bn = B. Then lim
n!1

(an + bn) = A+B.

Proof: Suppose that A and B are real numbers such that lim
n!1

an = A and lim
n!1

bn = B. Let " > 0 be given.

There exist Na and Nb natural numbers such that for all n > Na;

A� "

2
< an < A+

"

2

and for all k > Nb;
B � "

2
< bk < B +

"

2

Let N = max (Na; Nb) : If n > N; then

A� "

2
< an < A+

"

2
and B � "

2
< bn < B +

"

2

Adding these two inequalities we obtain

A� "

2
+B � "

2
< an + bn < A+

"

2
+B +

"

2
A+B � " < an + bn < A+B + "

Thus an + bn converges to A+B.

Example 1.

a) lim
n!1

�
2 +

1

n

�
= lim
n!1

2 + lim
n!1

1

n
= 2 + 0 = 2

b) lim
n!1

3n+ 1

n
= lim
n!1

�
3n

n
+
1

n

�
= lim
n!1

�
3 +

1

n

�
= lim
n!1

3 + lim
n!1

1

n
= 3 + 0 = 3

.
Theorem 3. (Di¤erence Rule) Let fang and fbng be sequences of real numbers. Suppose that A and B are

real numbers such that lim
n!1

an = A and lim
n!1

bn = B. Then lim
n!1

(an � bn) = A�B.

Proof: Suppose that A and B are real numbers such that lim
n!1

an = A and lim
n!1

bn = B. Let " > 0 be given.

There exist Na and Nb natural numbers such that for all n > Na;

A� "

2
< an < A+

"

2

and for all k > Nb;
B � "

2
< bk < B +

"

2

Multiply all sides by �1.
�B + "

2
> �bk > �B �

"

2

We turn the inequality around:
�B � "

2
< �bk < �B +

"

2
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Let N = max (Na; Nb) : If n > N; then

A� "

2
< an < A+

"

2
and �B � "

2
< �bn < �B +

"

2

Adding these two inequalities we obtain

A� "

2
+ (�B)� "

2
< an + (�bn) < A+

"

2
+ (�B) + "

2
A�B � " < an � bn < A�B + "

Thus an � bn converges to A�B.

.
Theorem 4. (Constant Multiple Rule) Let fang be a sequence of real numbers and c a real number. Suppose

that lim
n!1

an = A: Then lim
n!1

(can) = cA.

Proof: Case 1. Suppose that c = 0. Then can is a constant sequence and its limit is clearly zero.

Case 2. Suppose that c 6= 0. Let " > 0 be given. Since lim
n!1

an = A; there exists N > 0 so

that for all n > N ,

jan �Aj <
"

jcj mulitply by jcj

jcj jan �Aj < "

jcan � cAj < "

and so lim
n!1

can = cA.

.
Theorem 5. (Product Rule) Let fang and fbng be sequences of real numbers. Suppose that A and B are

real numbers such that lim
n!1

an = A and lim
n!1

bn = B. Then lim
n!1

(anbn) = AB

.
Theorem 6. (Quotient Rule) Let fang and fbng be sequences of real numbers. Suppose that A and B 6= 0 are

real numbers such that lim
n!1

an = A and lim
n!1

bn = B. Then lim
n!1

�
an
bn

�
=
A

B
.

Proving these theorems is more di¢ cult. We will not cover it in this course.

Example 2.

a) lim
n!1

�
� 3

n2

�
= �3 lim

n!1

�
1

n
� 1
n

�
= �3 lim

n!1
1

n
� lim
n!1

1

n
= �3 � 0 � 0 = 0

b) lim
n!1

3� 2n4
7n4 + 2

= lim
n!1

3

n4
� 2

7 +
2

n4

=

lim
n!1

�
3

n4
� 2

�
lim
n!1

�
7 +

2

n4

� = �2
7
= �2

7

c copyright Hidegkuti, Powell, 2012 Last revised: March 20, 2014



Lecture Notes Sequences - Part 2 page 4

.
Theorem 7. (The Sandwich Theorem for Sequences): Suppose that fang ; fbng ; and fcng are sequences

with lim
n!1

an = lim
n!1

cn = L. Suppose that there exists N positive integer such that for all n > N;

an � bn � cn

then bn converges to L.

Proof: Suppose the conditions hold. Let " > 0 be given. Since fang and fbng are converge to L, there exist Na
and Nc such that when n > Na, then

L� " < an < L+ "
and when n > Nc, then

L� " < cn < L+ "
Let N = max (Na; Nb). If n > N , then

L� " < an � bn � cn < L+ "

and so fbng converges to L.

Consequence: If jbnj � cn and cn ! 0, then bn ! 0.

Example 3.

a)
sinn

n
! 0 since � 1

n
� sinn

n
� 1

n
and

1

n
! 0 and � 1

n
! 0

b)
(�1)n

n2
! 0 since � 1

n2
� (�1)n

n2
� 1

n2

Some sequences are de�ned recursively. Recursive de�nitions enable us to compute the �rst, second, third, ...
nth term, but we cannot compute the nth term without �rst computing the �rst n� 1.
The Fibonacci sequence is a perfect example for this.

.
De�nition: The Fibonacci sequence is de�ned recursively as

F1 = 1; F2 = 1; and for all n 2 N; Fn+2 = Fn + Fn+1

The �rst few terms of the Fibonacci Sequence are 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; ::: The explicit formula for the nth
term of this sequence is a very interesting formula.

.
De�nition: A sequence fang is bounded from above if there exists a number M such that an �M

for all n. The number M is called an upper bound for the sequence fang. If M is an upper bound
for fang but no number less than M is an upper bound for fang ; then M is the least upper
bound for fang.

A sequence fang is bounded from below if there exists a number m such that an � m for all n.
The number m is called a lower bound for the sequence fang. If m is a lower bound for fang but
no number greater than m is a lower bound for fang, then m is the greatest lower bound for fang.

If fang is bounded from above and from below, we say that fang is bounded. If fang is not bounded,
we say that fang is an unbounded sequence.
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Example 4. a) The sequence 1; 4; 9; 16; :::: is bounded from below but not from above. 1 is the greatest lower
bound for the sequence.

b) The sequence
1

2
;
2

3
;
3

4
; :::;

n

n+ 1
is bounded.

1

2
is the greatest lower bound and 1 is the lowest upper bound

for this sequence.

.
Theorem 8. If fang is convergent, then an is bounded.

proof: Suppose that fang is a convergent sequence and an ! L. Let " = 1. There exists a natural number N
such that for all n > N ,

L� 1 < an < L+ 1

Consider now the set fa1; a2; a3; :::; aNg. Since this is a �nite set, it has a lowest and greatest element.
Denote these by m and M , respectively. We claim that min (m;L� 1) is a lower bound for the sequence
fang and max (M;L+ 1) is an upper bound for the sequence.

Let ak be any term of the sequence. If k > N; then L� 1 < ak < L+ 1 and so

min (m;L� 1) � L� 1 < ak < L+ 1 � max (M;L+ 1)

and if k � N , then ak is in the set fa1; a2; a3; :::; aNg and so

min (m;L� 1) � m < ak < M � max (M;L+ 1)
.
De�ntion: A sequence fang is nondecreasing if an � an+1 for all n. That is, a1 � a2 � a3 � ::: The sequence

is nonincreasing if an � an+1 for all n. That is, a1 � a2 � a3 � ::: The sequence fang is monotonic if
it is either nondecreasing or nonincreasing.

Example 5. a) The sequence 1;
1

2
;
1

3
;
1

4
; :::: is nonincreasing.

b) the constant sequence 2; 2; 2; :::: is both nonincreasing and nondecreasing.

c) the sequence 1;�1
4
;
1

9
;� 1

16
,.... is not monotonic.

.
Theorem 9. If a sequence fang is bounded from above and non-decreasing, then it is also convergent.

(Similarly, if a sequence is bounded from below and non-increasing, then it is convergent.)

proof: Suppose that fang is bounded and nondecreasing. Let L be the least upper bound for the sequence. Since
L is an upper bound, an � L for all n.
Let " > 0 be given. Since L is the lowest upper bound, L� " is NOT an upper bound. This means that
there exists m natural number such that am > L� ". Since an is nondecreasing, all subsequent terms will
have this property, i.e. for all n > m; an � am > L� ". thus we have that for all n > m

L� " < an � L < L+ "

and so L� " < an < L+ " and so an converges to L. The proof for nonincreasing sequences is similar.

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture
Notes. E-mail questions or comments to mhidegkuti@ccc.edu.
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