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The real numbers has the completeness property: If a non-empty set of real numbers is bounded above, then
there exists a least upper bound; if a non-empty set of real numbers is bounded below, then there exists a greatest
lower bound.

Definition: The sequence {a,} converges to the number L if for every positive number € there exists
an integer IV such that for all n,
if n > N then |a, — L| <e.

If no such number L exists, we say {a,} diverges.

If {a,} converges to L, we write lim a, = L or a,, — L and call L the limit of the sequence.
n—oo

Notice that |a, — L] <eand L —¢ <a, < L+ ¢ are equivalent statements.

Theorem 1. Convergent sequences have unique limits: if {a,} is a sequence with lim a, = A and lim a, = B,

n—oo n—oo
then A = B.

Proof: Suppose for a contradiction that a sequence a,, converges to two different numbers A and B. The basic idea
here is that if € is selected to be small enough, then the £ neighborhood of A will be disjoint of the & neighborhood
of B and so a, can not be in both intervals.

Suppose that A # B. We may assume that A < B. (Otherwise just re-label them so that the larger number is
denoted by B.) Define ¢ = % Since {ay} converges to A, there exists N4 so that for all n > Ny,

A—ec<ap<A+e
Similarly, since {a,} converges to B, there exists Np so that for all n > Np,
B—e¢<a,<B+e¢
Now let n > max (N4, Np), so both conditions hold. Then
A—e<ap,<A+e and B—-e<a,<B+e¢

We will only need the right-hand side of the first inequality and the left-hand side of the other:

B-A
apb, < A+e and B—ec<a, recall thate= 5
B-A B-A
a, < A+ and B — < ap
- 2A+B—A d2B B—A<
i 2 o M 2 on
2+ B - A 2B—-— B+ A
anp < f and f<(ln
A+ B A+ B
ap, < 5 and < Gn

These two can not be true at the same time. This is a contradiction, so A # B is impossible. This completes
our proof.
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In the following, we will prove properties of limits that enable us to compute limits based on other limits.

Theorem 2. (Sum Rule) Let {a,} and {b,} be sequences of real numbers. Suppose that A and B are
real numbers such that lim a, = A and lim b, = B. Then lim (a,+b,) = A+ B.

n—oo n—oo

Proof: Suppose that A and B are real numbers such that lim a, = A and lim b, = B. Let ¢ > 0 be given.

n—oo n—oo

There exist N, and N natural numbers such that for all n > N,

IS IS

and for all k > Ny,

3 I3
B—-<b B+ =
2< e < +2

Let N = max (Ng, Np). If n > N, then
€ € € €
A—§<an<A+§andB—§<bn<B—|—§

Adding these two inequalities we obtain

g g g g
A_§+B_§ < an+bn<A+§+B+§

A+B—-¢ < ap+by,<A+B+e¢
Thus a, + b, converges to A+ B.

Example 1.

. 1 : 1
a) lim (2—|—> = lim 24+ lim —=2+0=2
n

n—oo n—oo n—oo N

n— oo n n—00 n n n— oo n— o0 n—oo N

1 1 1 1
b) fim 2L i <3n+>:lim (3+>:lim3+lim:3—|—0:3
n

Theorem 3. (Difference Rule) Let {a,} and {b,} be sequences of real numbers. Suppose that A and B are
real numbers such that lim a, = A and lim b, = B. Then lim (a, —b,) = A — B.

n—o0 n—oo n—oo

Proof: Suppose that A and B are real numbers such that lim a, = A and lim b, = B. Let ¢ > 0 be given.

n—oo n—oo
There exist N, and N natural numbers such that for all n > N,

€ €
A—- n< A4+ =
2<0L < +2
and for all k > Ny,

& &
B—-<b,<B+ -
9 Tk *3

Multiply all sides by —1.

g g
—-B+—->-b -B——
+2> e > 5

We turn the inequality around:

g g
—B—-_-<-bpy<-B+
2 F *3
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Let N = max (Ng, Np). If n > N, then

13 13 g 13
A—§<an<A—|—§and —B—§<—bn<—BJr§

Adding these two inequalities we obtain

A=SH(=B)=2 < ant(-b)<A+Z+(-B)+2
A—-B—¢ < ap,—-b,<A—-—B+¢

Thus a, — b, converges to A — B.

Theorem 4. (Constant Multiple Rule) Let {a,} be a sequence of real numbers and ¢ a real number. Suppose
that lim a, = A. Then lim (ca,) = cA.
n—oo

n—oo

Proof: Case 1. Suppose that ¢ = 0. Then ca,, is a constant sequence and its limit is clearly zero.

Case 2. Suppose that ¢ #0. Let € > 0 be given. Since lim a, = A, there exists N > 0 so
n—oo
that for all n > N,
lap, — Al < — mulitply by ||

le|lan, — A] < €
lcan, —cA| < e

9
Cc

and so lim ca, = cA.
n—oo

Theorem 5. (Product Rule) Let {a,} and {b,} be sequences of real numbers. Suppose that A and B are
real numbers such that lim a, = A and lim b, = B. Then lim (a,b,) = AB

n—oo n—oo n—oo

Theorem 6. (Quotient Rule) Let {a,} and {b,} be sequences of real numbers. Suppose that A and B # 0 are
A
real numbers such that lim a, = A and lim b, = B. Then lim <an> = —.

Proving these theorems is more difficult. We will not cover it in this course.

Example 2.

3 3
1 — =2
b) 3! _ 12 ninolo<n4 ) —2 2
= 11m = - - =
n—oo Tt +2  n—oo . 7 7
T dm (1 7)
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Theorem 7. (The Sandwich Theorem for Sequences): Suppose that {a,}, {b,}, and {c,} are sequences
with lim a, = lim ¢, = L. Suppose that there exists N positive integer such that for all n > N,

n—oo n—oo

an < by < ¢y

then b,, converges to L.

Proof: Suppose the conditions hold. Let ¢ > 0 be given. Since {a,} and {b,} are converge to L, there exist N,
and N, such that when n > N,, then
L—-—es<a,<L+c¢

and when n > N,, then
L—ec<c,<L+e

Let N = max (Ng, Np). If n > N, then
L—e<ap,<b,<cp,<L+e

and so {b,} converges to L.

Consequence: If |b,| < ¢, and ¢, — 0, then b,, — 0.

Example 3.
3| 1 1 1 1 1
a) smne 0 since —— < Smn <-and ——0and —— — 0
n n n n n n
(—1)" , 1 (=D 1
b) 5 0 since ~3 < = < 3

Some sequences are defined recursively. Recursive definitions enable us to compute the first, second, third, ...
nth term, but we cannot compute the nth term without first computing the first n — 1.
The Fibonacci sequence is a perfect example for this.

Definition: The Fibonacci sequence is defined recursively as

=1, Fb=1, andforallneN, F,o=F,+ F,11

The first few terms of the Fibonacci Sequence are 1,1,2,3,5,8,13,21, 34, 55,89, ... The explicit formula for the nth
term of this sequence is a very interesting formula.

Definition: A sequence {ay} is bounded from above if there exists a number M such that a, < M
for all n. The number M is called an upper bound for the sequence {a,}. If M is an upper bound
for {a,} but no number less than M is an upper bound for {a,}, then M is the least upper
bound for {a,}.

A sequence {a,} is bounded from below if there exists a number m such that a,, > m for all n.
The number m is called a lower bound for the sequence {a,}. If m is a lower bound for {a,} but
no number greater than m is a lower bound for {a,}, then m is the greatest lower bound for {a,}.

If {ay} is bounded from above and from below, we say that {a,} is bounded. If {a,} is not bounded,
we say that {a,} is an unbounded sequence.
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Example 4. a) The sequence 1,4,9,16,.... is bounded from below but not from above. 1 is the greatest lower
bound for the sequence.
123 n
b) Th — ==y
) € SeqUENCe o, 7, 7, -y g
for this sequence.

1
is bounded. 3 is the greatest lower bound and 1 is the lowest upper bound

Theorem 8. If {a,} is convergent, then a, is bounded.

proof: Suppose that {a,} is a convergent sequence and a,, — L. Let e = 1. There exists a natural number N
such that for all n > N,
L-1<a,<L+1

Consider now the set {a1, as,as,...,an}. Since this is a finite set, it has a lowest and greatest element.
Denote these by m and M, respectively. We claim that min (m, L — 1) is a lower bound for the sequence
{an} and max (M, L + 1) is an upper bound for the sequence.

Let aj be any term of the sequence. If k > N, then L — 1 < ap < L+ 1 and so
min(m,L —1)<L—-1<ap,<L+1<max(M,L+1)
and if £ < N, then ay is in the set {aq, a9, as,...,an} and so

min (m,L—1) <m < ap < M <max(M,L+1)

Defintion: A sequence {a,} is nondecreasing if a,, < a,4+1 for all n. That is, a; < ag < a3 < ... The sequence

is nonincreasing if a,, > a4+ for all n. That is, a1 > a2 > a3 > ... The sequence {a,} is monotonic if

it is either nondecreasing or nonincreasing.

111
Example 5. a) The sequence 1, 33 is nonincreasing.
b) the constant sequence 2,2, 2, .... is both nonincreasing and nondecreasing.
1 1
c¢) the sequence 1, 9 I8 is not monotonic.

Theorem 9. If a sequence {a,} is bounded from above and non-decreasing, then it is also convergent.
(Similarly, if a sequence is bounded from below and non-increasing, then it is convergent.)

proof: Suppose that {a,} is bounded and nondecreasing. Let L be the least upper bound for the sequence. Since
L is an upper bound, a, < L for all n.

Let € > 0 be given. Since L is the lowest upper bound, L — ¢ is NOT an upper bound. This means that
there exists m natural number such that a,, > L — . Since a, is nondecreasing, all subsequent terms will
have this property, i.e. for all n > m, a, > an, > L — €. thus we have that for all n > m

L—e<a,<L<L+c¢

and so L — e < a, < L + ¢ and so a, converges to L. The proof for nonincreasing sequences is similar.

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture
Notes. E-mail questions or comments to mhidegkutiQccc.edu.
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